Advanced stage cHL: Nivo-AVD/S1826 and beyond

Sonali M. Smith, MD FASCO Elwood V. Jensen Professor of Medicine Chief, Section of Hematology/Oncology Co-Leader, Cancer Service Line The University of Chicago <u>smsmith@bsd.uchicago.edu</u> @SoniSmithMD

Comprehensive Cancer Center

Key paradigms in management of advanced stage cHL

Interim PET is predictive of outcome

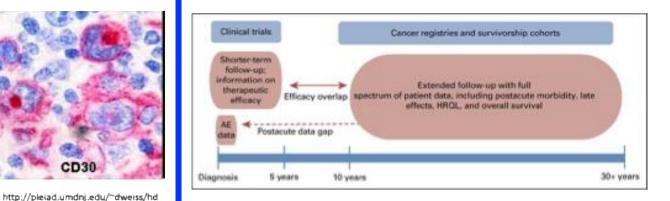
ILO 0.8 0.6 0.4 0.4 0.2 0 1 2 3 4 Time (years)

Gallamini JCO 2007

Two "new" targets

types/hdimmuno_img.html

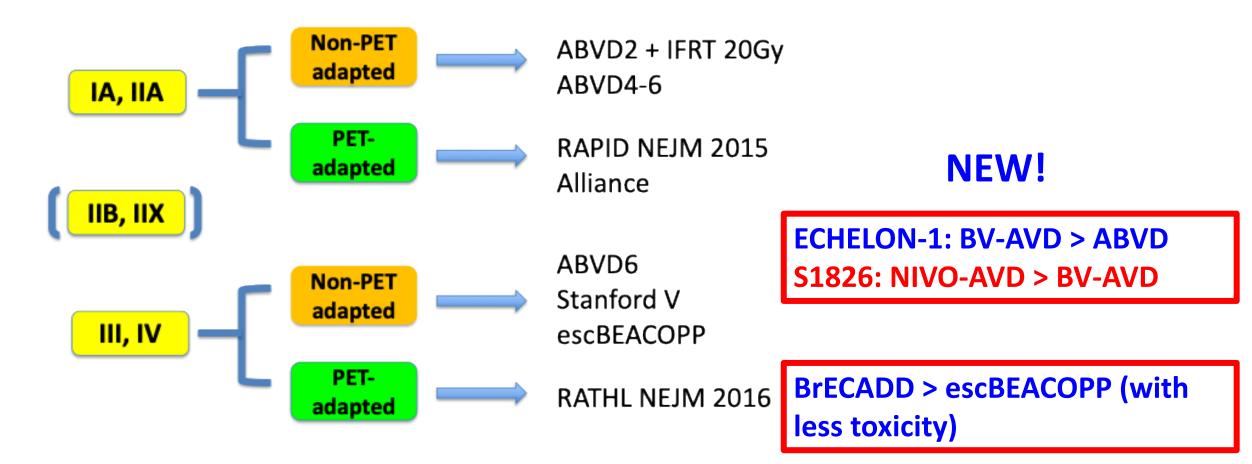
Strong CD30 expression


POC1/2 Amplification

Ansell N Engl J Med. 2015 Jan 22;372(4):311-9.

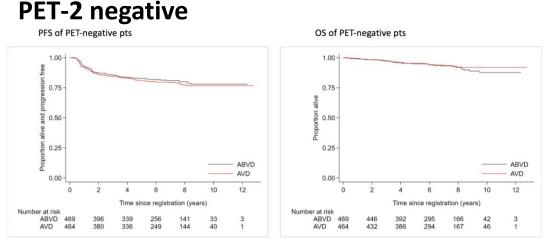
Near-universal 9p24

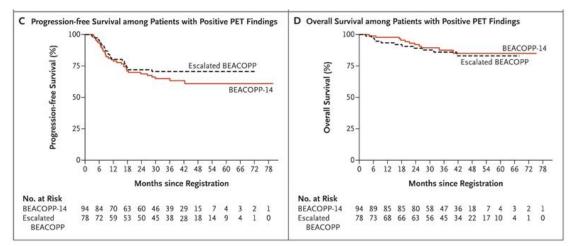
amplification leads to PDL-1 and PDL-2 expression


Need for long-term follow up

Evens and Parsons, JCO 38:4131-33 2020

UChicago Medicine Comprehensive Cancer Center

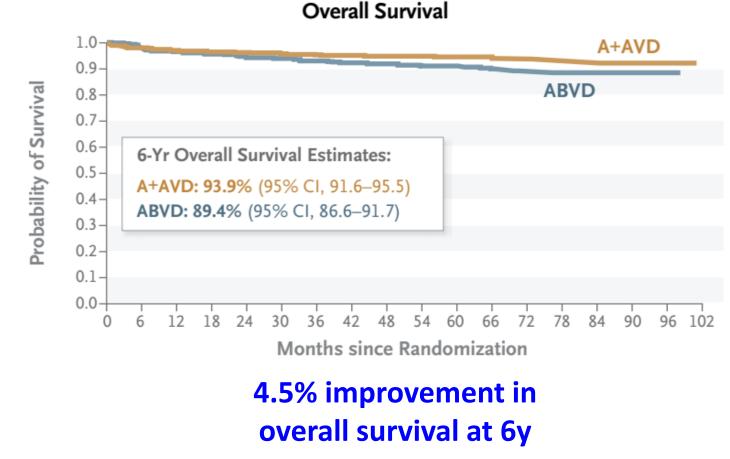

Snapshot of frontline standard treatment approach: PET-adapted and non-PET-adapted



Treatment Guided by PET in Advanced Hodgkin Lymphoma:

RATHL Trial

PET-2 positive

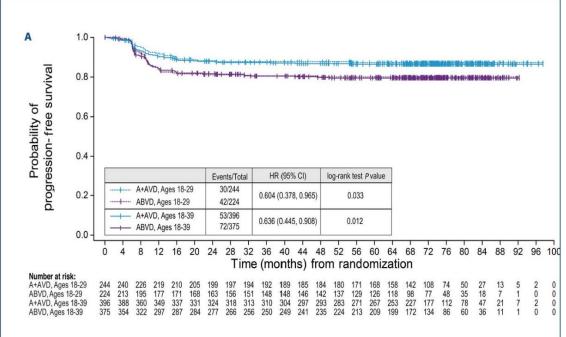

If you start with ABVD, you can drop the bleomycin if PET-2 negative

Not clear that escalating therapy in PET-2 patients improves outcome

Johnson et al. N Engl J Med. 2016 Jun 23;374(25):2419-29. Luminari et al. ASH 2022; #315

Slide courtesy of Steve Ansell

ECHELON-1: BV-AVD vs ABVD (non-PET-adapted) long-term follow up



Ansell ASCO 2024; Ansell SM et al. DOI: 10.1056/NEJMoa2206125

ECHELON-1: BV-AVD vs ABVD (non-PET-adapted) outcome by age groups and PET2

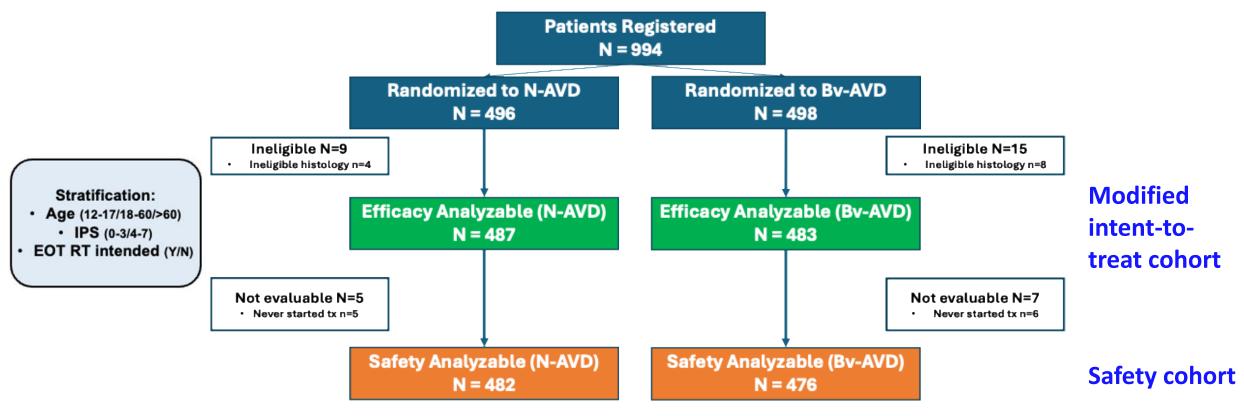
PFS in AYA (age 18-39 years)

Group, % (95% Cl)	A+AVD OS Rate, % (95% CI) n=664	ABVD OS Rate, % (95% Cl) n=670	HR (95% CI) p-value
All pts PET2 negative	93.5 (91.1–95.2) n=664 95.0 (92.8–96.6)	88.8 (85.8–91.1) n=670 90.2 (87.2–92.5)	0.62 (0.42-0.90) 0.01 0.57 (0.37-0.87)
PET2 positive	90.7 (72.3–97.1) n=47	74.0 (59.9–83.8) n=58	0.009 0.34 (0.11-1.03) 0.05
Aged <40 years Aged <60 years	98.2 (96.2–99.1) n=396 96.4 (94.4–97.7)	95.0 (91.9–96.9) n=375 92.9 (90.3–94.9)	0.39 (0.16-0.95 0.032 0.49 (0.29-0.83
Aged ≥60 years	n=580 72.6 (60.6–81.5) n=84	n=568 66.7 (55.9–75.5) n=102	0.007 1.01 (0.59–1.71) 0.98
Stage III	92.1 (87.6–95.1) n=237	90.3 (85.3–93.7) n=246	1.01 (0.54–1.87 0.98
Stage IV	94.2 (91.3-96.2) n=425	88.1 (84.3-91.0) n=421	0.49 (0.30-0.79) 0.003

Improvement across all subgroups except older patients Prognostic significance of PET2 positivity diminishes

Crosswell Haematologica 2024; Ansell ASCO 2024; Ansell SM et al. DOI: 10.1056/NEJMoa2206125

SWOG S1826, a Randomized Study of Nivolumab(N)-AVD Versus Brentuximab Vedotin(BV)-AVD in Advanced Stage (AS) Classic Hodgkin Lymphoma (cHL)


Alex F. Herrera, MD¹, Michael L. LeBlanc, PhD², Sharon M. Castellino, MD, MSc³, Hongli Li, MS², Sarah C. Rutherford, MD⁴, Andrew M Evens, DO, MSc⁵, Kelly Davison, MD⁶, Angela Punnett, MD⁷, David C. Hodgson, MD, MPH, FRCPC⁸, Susan K Parsons, MD, MRP⁹, Sairah Ahmed, MD¹⁰, Carla Casulo, MD¹¹, Nancy L. Bartlett, MD¹², Joo Y. Song, MD¹³, Richard F. Little¹⁴, Brad S. Kahl, MD¹², John P. Leonard, MD⁴, Sonali M. Smith, MD¹⁵, Kara M. Kelly, MD¹⁶, and Jonathan W. Friedberg, MD, MSSc¹¹

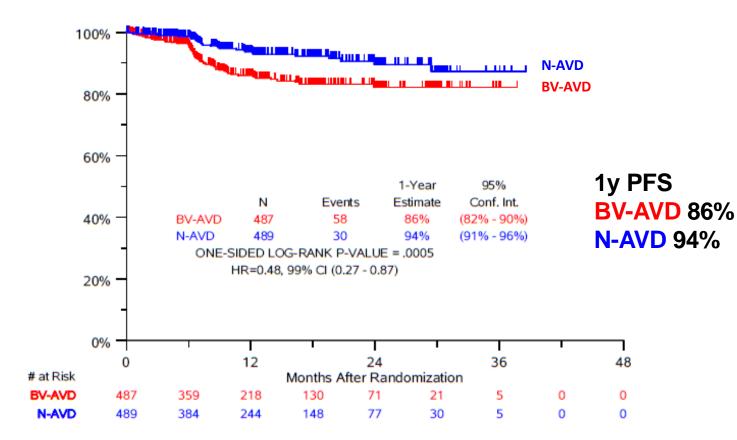
¹City of Hope, Duarte, CA, ²SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, WA, ³Emory University, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, ⁴Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, ⁵Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, ⁶McGill University, Montreal, QC, Canada, ⁷Hospital for Sick Children, Toronto, ON, Canada, ⁸Department of Radiation Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada, ⁹Department of Radiation Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada, ⁹Tufts Medical Center, Tufts University School of Medicine, Boston, MA, ¹⁰ University of Texas M.D. Anderson Cancer Center, Houston, TX, ¹¹Division of Hematology/Oncology, University of Rochester, Rochester, NY ¹¹Division of Medical Oncology and Hematology, Princess Margaret Cancer Center, Toronto, ON, Canada, ¹²Washington University School of Medicine in St. Louis, MO, ¹³Department of Pathology, City of Hope, CA ¹⁴Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD ¹⁵ Department of Oncology, University of Chicago, IL, ¹⁶Department of Pediatric Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY

S1826 CONSORT Diagram

Data cut-off: Dec 15, 2022

Dates of enrollment: July 19, 2019 – Oct 5, 2022

Primary endpoint: PFS

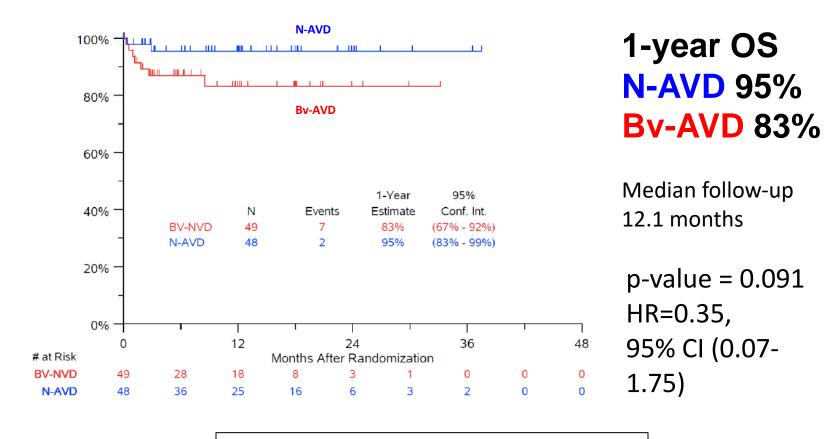

UChicago Medicine

Secondary endpoints: EFS, OS, EOT CMR rate, PROs

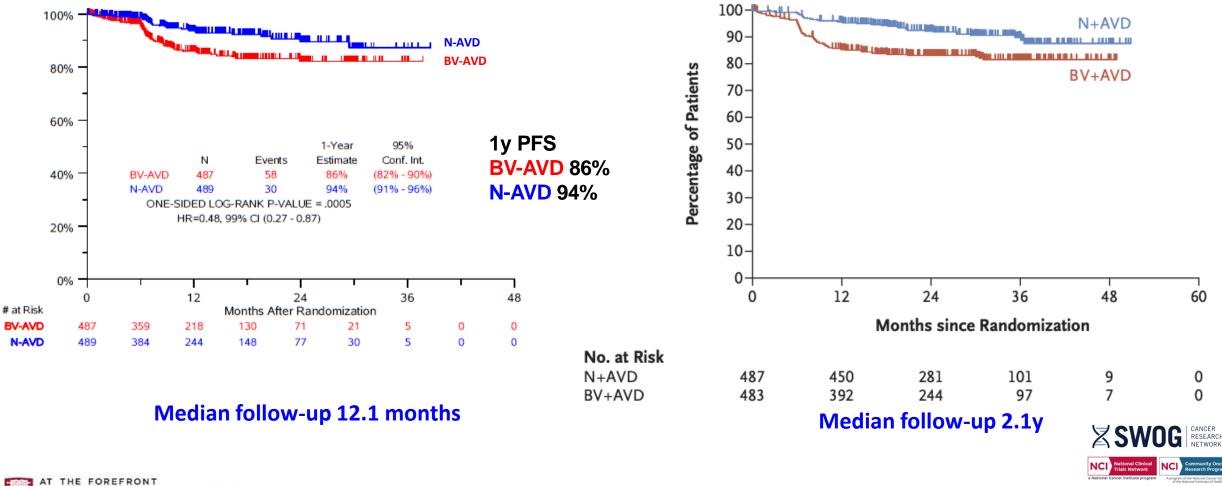
Comprehensive Candene Senteer by: Alex F. Herrera, MD

Herrera, AF et al. N Eng J Med. 2024 Oct 17;391(15):1379-138.

ASCO Plenary 2023: N-AVD improves PFS compared to BV-AVD

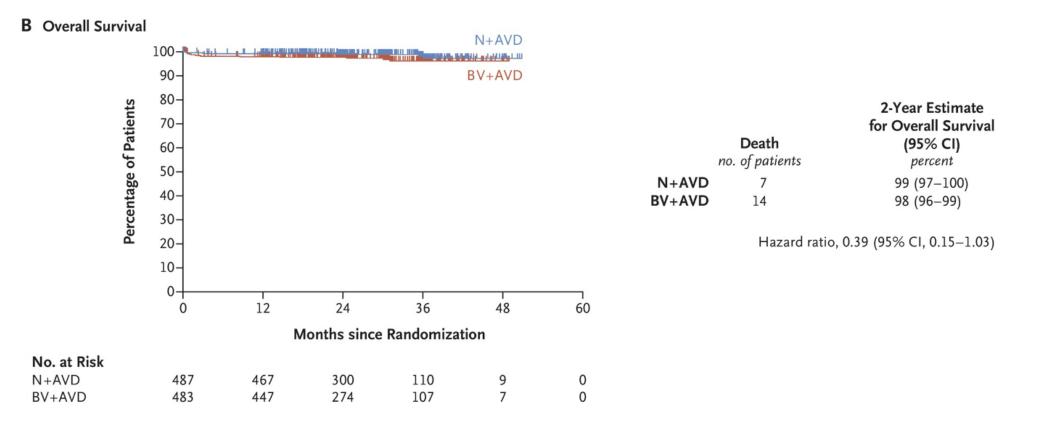


Median follow-up 12.1 months



Fewer deaths occurred on N-AVD vs Bv-AVD

Non-relapse mortality N-AVD 4% vs Bv-AVD 14%


SWOG S1826: N-AVD improves PFS compared to BV-AVD

Herrera ASCO Plenary 2023; Herrera N Engl J Med 2024;391:1379-1389

S1826 – Overall Survival Comparison

Herrera et al NEJM 2024

Fred Hutchinson Cancer Center

Slide courtesy of Ryan Lynch

Ryan Lynch, MD

S1826 – Sub-group analysis

Subgroup	N+AVD	BV+AVD	Hazard Ratio for Disease Progression or I	Death (95% CI)
	no. of events,	'total no. (%)		
Age				
12—17 yr	7/118 (5.9)	21/118 (17.8)	⊢−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−	0.31 (0.13-0.74)
18–60 yr	27/321 (8.4)	43/318 (13.5)		0.59 (0.36-0.95)
>60 yr	7/48 (14.6)	17/47 (36.2)		0.30 (0.12-0.72)
IPS risk group				
0-3	24/332 (7.2)	48/328 (14.6)	⊢∎ ↓	0.46 (0.28–0.76)
4–7	17/155 (11.0)	33/155 (21.3)	⊢	0.46 (0.26-0.83)
Stage				
111	12/185 (6.5)	22/168 (13.1)	⊢ ↓	0.45 (0.22-0.92)
IV	29/302 (9.6)	59/315 (18.7)	⊢₩	0.48 (0.31-0.74)
Symptoms				
В	29/288 (10.1)	54/273 (19.8)	├──╋───┤	0.47 (0.30-0.74)
А	12/199 (6.0)	27/210 (12.9)		0.44 (0.22-0.86)
			0.25 0.5 1.0 1.5	
			N+AVD BV+AVD Better Better	

PFS benefit seen across all ages, IPS score, and stage

Herrera et al NEJM 2024

Fred Hutchinson Cancer Center

S1826 – Treatment analysis

		Total		Nivolumab + AVD		Brentuximab Vedotin + AVD	
		n	%	n	%	n	%
Eligible Patients		970	100.0%	487	100.0%	483	100.0%
Completed treatmen	ıt	875	90.2%	450	92.4%	425	88.0%
Discontinued all trea	atment early	95	9.8%	37	7.6%	58	12.0%
	Adverse event	40	4.1%	20	4.1%	20	4.1%
	Refusal unrelated to AE	22	2.3%	9	1.8%	13	2.7%
	Progression/relapse	9	0.9%	0	0	9	1.99
	Death	11	1.1%	3	0.6%	8	1.79
	Other – not protocol specified	13	1.3%	5	1.0%	8	1.7%
Any discontinuation	of Bv or Nivolumab*	153	15.8%	46	9.4%	107	22.2%
Discontinued Bv or I	Nivo, but continued other agents**	78	8.0%	19	3.9%	59	12.29
Received any G-CSF	-	741	76.4%	274	56.3%	467	96.79

Numerically higher rates of on-treatment study drug discontinuation and death in Bv arm

Herrera et al NEJM 2024

Fred Hutchinson Cancer Center

Has PD1 Blockade Changed the Standard of Care for cHL?, ASH Education Session, San Diego, CA, December 7, 2024

Slide courtesy of Ryan Lynch

Ryan Lynch, MD

S1826 – Grade 3+ Adverse Events

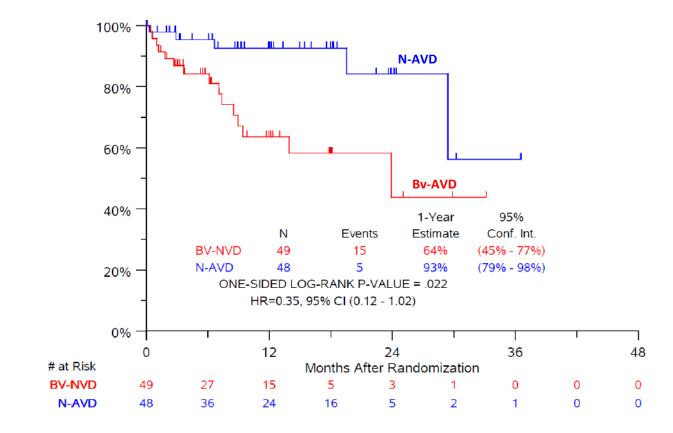
	N-AVD	BV-AVD
	n = 482	n = 476
	Grade≥ 3	Grade≥ 3
Adverse Event Type	No (%)	No (%)
Neutrophil count decreased	232 (48%)	126 (26%)
White blood cell decreased	73 (15%)	61 (13%)
Anemia	29 (6%)	43 (9%)
Lymphocyte count decreased	30 (6%)	41 (9%)
Febrile neutropenia	28 (6%)	33 (7%)
ALT increased	22 (5%)	23 (5%)
Peripheral sensory neuropathy	5 (1%)	39 (8%)
AST increased	12 (2%)	14 (3%)
Platelet count decreased	9 (2%)	16 (3%)
Sepsis	8 (2%)	16 (3%)

- Higher rate of G3+ neutropenia in ANVD arm did not translate to increased febrile neutropenia
 - GCSF not mandatory with ANVD

Herrera et al NEJM 2024

Fred Hutchinson Cancer Center

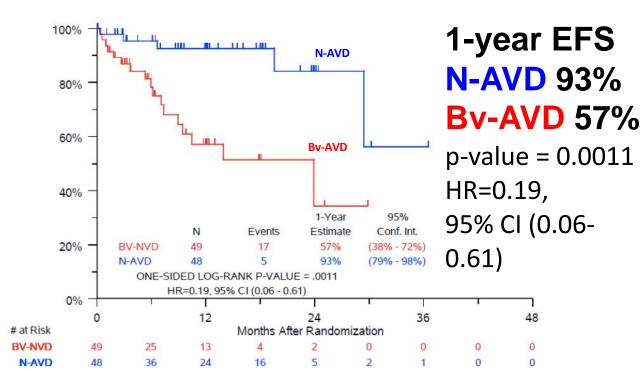
Ryan Lynch, MD


S1826 Older Pts Baseline Characteristics

Baseline characteristics	N-AVD N = 48 N (%)	Bv-AVD N = 49 N (%)	Baseline characteristics	N-AVD N = 48 N (%)	Bv-AVD N = 49 N (%)
Age, median (range)	66.4 (60-84 y)	67.1(60-87 y)	Stage		
Ago 60 60	24 (659/)	26 (740/)	III	16 (33%)	22 (45%)
Age 60-69 Age 70-79	31 (65%) 14 (29%)	36 (74%) 12 (24%)	IV	32 (67%)	27 (55%)
Age ≥80	3 (6%)	1 (2%)	B symptoms present	25 (52%)	27 (55%)
Female Sex	19 (40%)	18 (37%)	IPS Score		
Race			0-3	24 (50%)	27 (55%)
White	43 (90%)	40 (82%)	4-7	24 (50%)	22 (45%)
Black Asian	1 (2%)	2 (4%)	Bulky disease > 10cm	7 (15%)	5 (10%)
Other/Unknown	1 (2%) 3 (6%)	1 (2%) 6 (12%)	HIV+	0 (0%)	1 (2%)
Hispanic	5 (10%)	5 (10%)	Elevated bilirubin	4 (8%)	4 (8%)

*slight imbalance

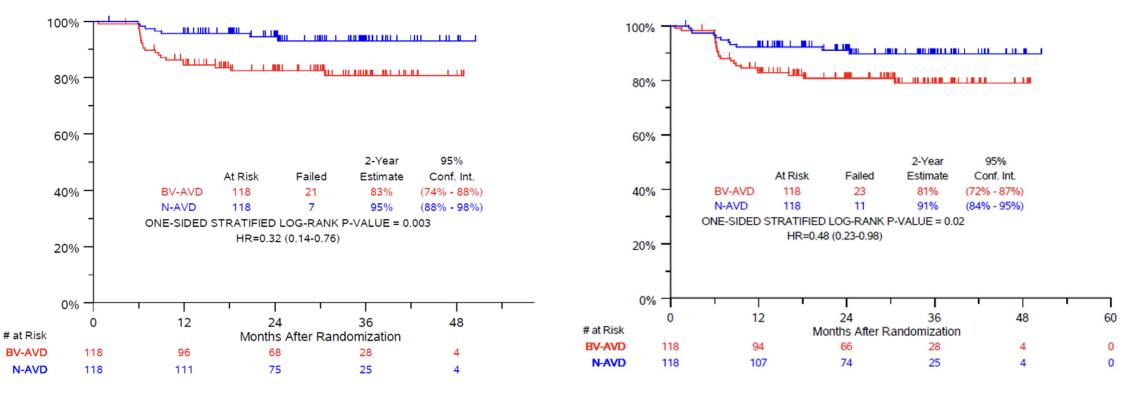
S1826: N-AVD markedly improves PFS over Bv-AVD in older patients with cHL


1-year PFS N-AVD 93% Bv-AVD 64%

Median follow-up 12.1 months

p-value = 0.022 HR=0.35, 95% CI (0.12-1.02)

Rutherford ASH 2023, abstr 181


S1826: EFS benefit with N-AVD over Bv-AVD is also significant in older pts

Majority of events on Bv-AVD were progression/ relapse (16%) and death (12%)

EFS event	N-AVD	Bv-AVD
Progression/Relapse	3	8
Death without progression	2	6
Non-protocol chemotherapy before PD	0	1
Non-protocol immunotherapy before PD	0	0
Non-protocol RT prior to PD	0	2
Total EFS Event	5	17

S1826: PFS and EFS Outcomes in pediatric patients (< 18yo)

Events: non-protocol chemo or RT, progression, death

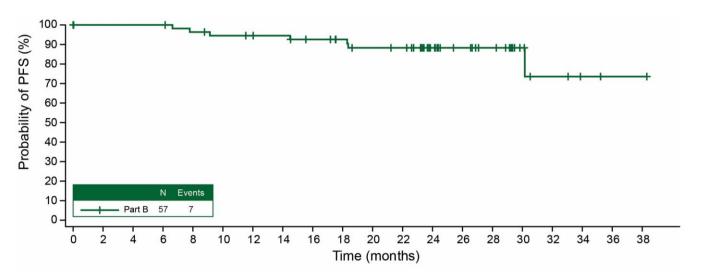
Only 3 patients total received protocol-specified RT

S1826: Toxicities of interest (infusion reactions and IRAEs) in pediatric patients

		118)	BV-AVD (N = 118)		
Toxicity	Any Grade No. (%)	Grade ≥ 3 No. (%)	Any Grade No. (%)	Grade ≥ 3 No. (%)	
Infusion-related reactions	15 (13%)	4 (3%)	6 (5%)	0 (0)	
Potential irAEs					
ALT Increased ^{aw}	54 (46%)	8 (7%)	67 (57%)	9 (8%)	
AST increased ##	48 (41%)	3 (3%)	56 (47%)	7 (6%)	
Gastritis	5 (4%)	1 (1%)	2 (2%)	0 (0)	
Colitis	0 (0)	0 (0)	1 (1%)	1 (1%)	
Pneumonitis	3 (3%)	1 (1%)	1 (1%)	1 (1%)	
Hypothyroidism	6 (5%)	0 (0)	1 (1%)	0 (0)	
Hyperthyroidism	2 (2%)	0 (0)	0 (0)	0 (0)	
Rash maculo-papular	3 (3%)	0 (0)	17 (14%)	0 (0)	
Rash acneiform	3 (3%)	0 (0)	5 (4%)	0 (0)	
Arthralgia	13 (11%)	1 (1%)	6 (5%)	0 (0)	

Advanced stage classical Hodgkin lymphoma: treatment options and considerations in 2025

RATHL	BV-AVD	Nivo-AVD	BrECADD
 Resource limited Very low-risk disease 	 No checkpoint inhibitor available Severe autoimmune conditions 	 Treatment of choice if available Older patients Pediatric patients 	 Desire for shorter treatment duration Less cumulative chemotherapy doses



Brentuximab Vedotin, Nivolumab, Doxorubicin, and

Dacarbazine for Advanced Stage Classical Hodgkin

Lymphoma

Overall Response at EOT per Investigator, n (%)	Part B N = 56, Efficacy Evaluable
ORR at EOT (CR+PR) ^{a,b}	53 (95)
95% CI for ORR	(85.1, 98.9)°
CR	50 (89)
95% CI for CR	(78.1, 96.0)°
PR	3 (5)
95% CI for PR	(1.1, 14.9) ^c
SD	0
PD	2 (4)
IR ^d ,	1 (2)

Slide courtesy of Steve Ansell

Lee et al. ASH 2023, abstract 608

"And beyond..."

- Major discussions related to the next generation of clinical trials in advanced stage cHL
- De-escalation of therapy
 - Decreased number of cycles
 - Replace chemotherapy with novel agents
- New technologies
 - Use of MRD to guide treatment cycles
 - Radiomics?

9th Post-graduate Lymphoma Conference: Frontline cHL Questions

Comprehensive Cancer Center

1. Which of the following clinical trials relies on PETadapted therapy in classical Hodgkin lymphoma?

- 1. ECHELON-1
- 2. ECHELON-2

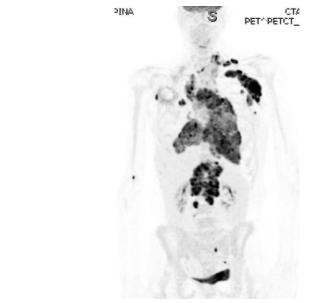
3. GHSG HD21

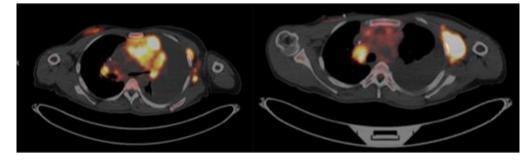
4. S1826

RATIONALE

The correct answer is choice 3. GHSG HD21 is a randomized phase 3 trial of eBEACOPP versus BreCADD. Patients undergo PET2/CT after 2 cycles of chemotherapy, and then assigned to either 2 versus 4 additional cycles of the respective arms based on PET-response. ECHELON-1 is a randomized phase 3 trial of BV-AVD versus ABVD without response-adapted treatment. S1826 is a randomized phase 3 trial of nivo-AVD versus BV-AVD without response-adapted treatment. ECHELON-2 is a randomized trial in CD30 positive T-cell lymphomas and is not relevant for cHL.

2. What was the frequency of immune-related adverse effects on nivo-AVD in the S1826 trial leading to treatment discontinuation?


1. <1%


- 2. 1-5%
- 3. 5-10%
- 4. 10-15%

RATIONALE

The correct answer is choice 1. Essentially no patients stopped nivo-AVD related to IRRAE's. In Supplemental Table 9, there is a list of immune-related adverse events for both arms of the trial. Numerically increased immune-related adverse effects on the nivo-AVD arm include transaminase elevation and pneumonitis. However, the frequency of these effects is very small, and did not lead to treatment discontinuation in any patients. A 26 yo woman with presents with chest pain and SOB. PET scan is at the right. Biopsy shows cHL. Which of the following statements is correct regarding S1826 and GHSG HD21?

- 1. The cumulative dose of anthracyclines is higher in BV-AVD compared to nivo-AVD.
- 2. The cumulative dose of anthracyclines is higher in nivo-AVD compared to BreCADD.
- 3. The cumulative dose of anthracyclines is lower in BV-AVD compared to BreCADD.
- 4. The cumulative dose of anthracyclines is higher in BreCADD compared to nivo-AVD.

A 26 yo woman with presents with chest pain and SOB. PET scan is at the right. Biopsy shows cHL. Which of the following statements is correct regarding S1826 and GHSG HD21?

- 1. The cumulative dose of anthracyclines is higher in BV-AVD compared to nivo-AVD.
- 2. The cumulative dose of anthracyclines is higher in nivo-AVD compared to BreCADD.
- 3. The cumulative dose of anthra lower in BV-AVD compare
- 4. The cumulative dose of ar higher in BreCADD compa

RATIONALE

The correct answer is choice 2. In S1826, the total dose of doxorubicin is 300mg/m2 and is the same in both the nivo-AVD and the BV-AVD arms. Therefore, choice 1 is not correct. The dose of doxorubicin is 40mg/m2 every 21d for BreCADD; given the PETadapted strategy, a significant portion of patients completed treatment with only 4 cycles of therapy and less than 200mg/m2 of doxorubicin.